A Perfect Sampling Method for Exponential Random Graph Models

نویسنده

  • Carter T. Butts
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Perfect Sampling Method for Exponential Family Random Graph Models

Generation of deviates from random graph models with non-trivial edge dependence is an increasingly important problem. Here, we introduce a method which allows perfect sampling from random graph models in exponential family form (“exponential family random graph” models), using a variant of Coupling From The Past. We illustrate the use of the method via an application to the Markov graphs, a fa...

متن کامل

A Monte Carlo Metropolis-Hastings Algorithm for Sampling from Distributions with Intractable Normalizing Constants

Simulating from distributions with intractable normalizing constants has been a long-standing problem in machine learning. In this letter, we propose a new algorithm, the Monte Carlo Metropolis-Hastings (MCMH) algorithm, for tackling this problem. The MCMH algorithm is a Monte Carlo version of the Metropolis-Hastings algorithm. It replaces the unknown normalizing constant ratio by a Monte Carlo...

متن کامل

Auxiliary Parameter MCMC for Exponential Random Graph Models

Exponential random graph models (ERGMs) are a well-established family of statistical models for analyzing social networks. Computational complexity has so far limited the appeal of ERGMs for the analysis of large social networks. Efficient computational methods are highly desirable in order to extend the empirical scope of ERGMs. In this paper we report results of a research project on the deve...

متن کامل

Markov Chain Monte Carlo Estimation of Exponential Random Graph Models

This paper is about estimating the parameters of the exponential random graph model, also known as the p∗ model, using frequentist Markov chain Monte Carlo (MCMC) methods. The exponential random graph model is simulated using Gibbs or MetropolisHastings sampling. The estimation procedures considered are based on the Robbins-Monro algorithm for approximating a solution to the likelihood equation...

متن کامل

Conditional estimation of exponential random graph models from snowball sampling designs

A complete survey of a network in a large population may be prohibitively difficult and costly. So it is important to estimate models for networks using data from various network sampling designs, such as link-tracing designs. We focus here on snowball sampling designs, designs in which the members of an initial sample of network members are asked to nominate their network partners, their netwo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009